8 класс

Задача 1. Химия 8 класса не предусматривает изучения свойств соединений IV–VII периодов таблицы химических элементов Д.И. Менделеева. Однако, основываясь на периодическом законе и знаниях основных свойств изученных элементов можно без труда составить необходимые химические уравнения. Ниже представлены схемы реакций получения солей X_1 – X_{10} . Закончите представленные уравнения реакций и уравняйте их. Назовите соли X_1 – X_{10} .

$SeO_2 + NaOH(изб) \rightarrow X_1$	$HIO_3 + Ba(OH)_2 \rightarrow X_6$
$Bi_2O_5 + CsOH \rightarrow X_2$	$H_3SbO_4 + NaOH(изб) \rightarrow X_7$
$H_2SeO_4(1 \text{ моль}) + NaOH(1 \text{ моль}) \rightarrow X_3$	$CrO_3 + KOH(изб) \rightarrow X_8$
$H_3AsO_4(1 \text{ моль}) + NaOH(1 \text{ моль}) \rightarrow X_4$	$PH_3 + HI \rightarrow X_9$
$Cl_2O_7 + Ca(OH)_2 \rightarrow X_5$	$MoO_3 + NH_3*H_2O(изб) → X_{10}$

Задача 2. Бинарное вещество **A**, образованное соседями по подгруппе, было впервые получено в США в конце XVIII века, а ныне получило широкое распространение благодаря абразивным свойствам. Твёрдость этого материала близка к алмазу, а сам он имеет около 200 различных кристаллических модификаций, обладающих разной окраской – от чёрной до пурпурной. Некоторые из них даже проявляют полупроводниковые свойства.

Одним из методов получения соединения $\bf A$ является прокаливание простого вещества $\bf B$ и бинарного соединения $\bf C$, являющегося важной составляющей земной коры. Помимо $\bf A$, в данной *реакции* образуется бесцветный ядовитый газ $\bf D$ без запаха, смесь которого с азотом обладает постоянной относительной плотностью по водороду вне зависимости от массовой доли последнего.

- 1) Определите вещества \mathbf{A} — \mathbf{D} , если массовая доля более лёгкого элемента \mathbf{B} в составе \mathbf{A} равна 30 %.
- 2) Приведите уравнение реакции получения **A** из смеси **B** и **C**.
- 3) Вычислите массу вещества **A**, которая была получена в ходе реакции. Дополнительно известно, что выделившийся газ **D** может вступить во взаимодействие с 5,6 л (н. у.) кислорода, причём объём полученной газовой смеси уменьшится на 25 % при пропускании через избыток водного раствора гидроксида натрия.

Задача 3. Химические свойства «сладкого» металла \mathbf{X} известны практически каждому из нас. Будучи амфотерным, он легко растворяется как в соляной кислоте с образованием бесцветного раствора соли \mathbf{A} (реакция 1), так и в водном растворе гидроксида натрия (реакция 2). Основным продуктом данной реакции является комплексное соединение \mathbf{B} , в котором атом \mathbf{X} окружён 4 гидроксильными группами. Несмотря на относительно высокую химическую активность простого вещества, оно практически не растворяется в концентрированных серной и азотной кислотах. Пропускание углекислого газа в раствор \mathbf{B} (реакция 3) или добавление водного аммиака к \mathbf{A} (реакция 4) позволяет получить белый осадок \mathbf{C} , растворимый как в кислотах, так и в щелочах. Теоретически из 1,00 г \mathbf{X} можно синтезировать 4,78 г \mathbf{C} .

При добавлении к раствору соли **A** раствора карбоната аммония образуется малорастворимое соединение **D** (*реакция 5*), содержащее 71.43 % кислорода и 10.71 % углерода по массе.

- 1. Установите металл X, ответ подтвердите расчётом.
- 2. Определите формулы веществ A-D.
- 3. Напишите уравнения реакций 1-5.

Задача 4. Несмотря на то что химический элемент $\bf A$ находится на втором месте по распространённости на Земле, соответствующее ему простое вещество было получено лишь 200 лет назад. Основным минералом $\bf A$ является тугоплавкое бинарное соединение $\bf B$, содержащее 53,33 % кислорода по массе. Оно медленно растворяется в концентрированном растворе гидроксида калия (*реакция 1*). Среди некоторых специфических свойств $\bf B$ можно выделить взаимодействие с бинарным водородным соединением $\bf B$, проявляющим кислотные свойства. Указанная реакция, протекающая при 400°C, приводит к образованию газообразного соединения $\bf \Gamma$ (*реакция 2*), содержащего 26,92 % элемента $\bf A$ по молям. При нагревании $\bf \Gamma$ с твёрдым веществом $\bf Д$, представляющим собой соль кислоты $\bf B$ и некоего щелочного металла, образуется соединение $\bf E$ (*реакция 3*), содержащее 12,73 % элемента $\bf A$ по массе. $\bf B$ XIX веке простое вещество $\bf A$ получали восстановлением соли $\bf E$ металлическим калием при повышенной температуре (*реакция 4*), а в настоящее время используют восстановление $\bf B$ с помощью металлического магния (*реакция 5*).

- 1. Определите формулы веществ А-Е. Ответ подтвердите расчётом.
- 2. Напишите уравнения *реакций* 1-5.

Задача 5. Для регенерации выдыхаемого воздуха на подводных лодках или орбитальных станциях обычно используют картриджи с твёрдыми бинарными соединениями **A** и **Б**, образованные металлами одной группы Периодической системы химических элементов. Известно, что массовая доля кислорода в **A** составляет 41,03 %, в то время как в **Б** она немного больше – 45,07 %. После полного использования картриджей в них остаются только индивидуальные соли – **В** и **Г** соответственно (*реакции 1 и 2*). Соль **В** окрашивает бесцветное пламя в жёлтый цвет и реагирует с соляной кислотой с выделением газа (*реакция 3*). **Г** даёт светло-фиолетовое окрашивание пламени и малорастворимое вещество при взаимодействии с хлоридом бария (*реакция 4*).

- 1. Определите формулы веществ А-Г. Ответ подтвердите расчётом.
- 2. Напишите уравнения реакций 1–4.
- 3. В каком мольном соотношении необходимо взять вещества А и Б для наполнения регенерирующего картриджа, чтобы общее давление в системе при его использовании не менялось.
- 4. Какую минимальную массу смеси из п. 3 надо загрузить в картридж, чтобы регенерировать углекислый газ, выдыхаемый 4 членами экипажа за полёт длительностью 66 дней, если известно, что человек выдыхает в среднем 800 г углекислого газа в сутки.

Задача 6.

Безусловно, каждому известно, что химия изучает различные вещества и их превращения. Однако в нашей любимой науке речь идёт не только о химических процессах. Существует отдельная большая область, изучающая ядерные реакции, называемая *радиохимией*.

Среди всех путей радиоактивного распада наиболее распространёнными являются два: α -распад, сопровождающийся испусканием ядра атома гелия 4_2He , и β^- -распад, в результате которого из ядра вылетает электрон и элементарная частица антинейтрино $\bar{\nu}$, не имеющая массы и заряда.

1. Запишите общие схемы процессов α - и β -распадов, считая, что в них вступает ядро элемента \mathbf{X} с массовым числом M и зарядом Z, а образуется ядро элемента \mathbf{Y} . Природные радиоактивные ядра, к которым относится и \mathbf{A} , зачастую претерпевают целый каскад превращений, образуя большие семейства. Одно из них представлено на рисунке:

$$A \xrightarrow{\alpha} B \xrightarrow{\beta^{-}} C \xrightarrow{\beta^{-}} D \xrightarrow{\alpha} E \xrightarrow{\alpha} F \xrightarrow{\alpha} G \xrightarrow{\alpha} H$$

$$\downarrow^{\alpha}$$

$$^{206}Pb \xrightarrow{\alpha} N \xrightarrow{\beta^{-}} M \xrightarrow{\beta^{-}} L \xrightarrow{\alpha} K \xrightarrow{\beta^{-}} J \xrightarrow{\beta^{-}} I$$

2. Расшифруйте ядра **A–N**, представленные на схеме превращений.