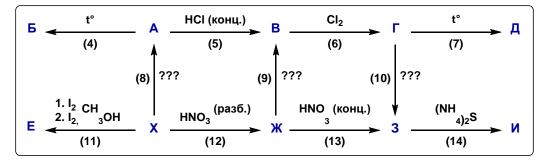
Теоретический тур

18.02.2024 г.

11 класс

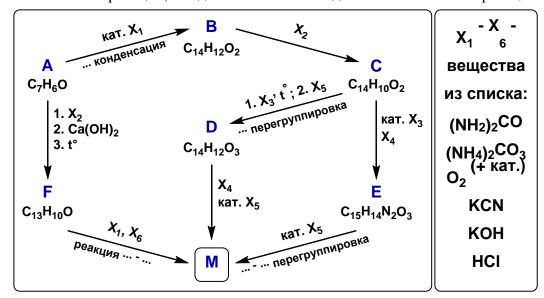
Из предложенных шести задач оцениваются пять с наибольшим баллом!


Vказание: a) при расчетах значения атомных масс следует округлять до целых, кроме хлора (A_r (Cl) = 35,5), δ) в решении задачи обязательно нужно привести необходимые расчеты и рассуждения, ответ без доказательств может быть оценен в 0 баллов

- 1. Определите неизвестные вещества $V_1 V_{11}$.
- 2. Запишите <u>уравнения</u> *реакций* 1 8.
- 3. Как сейчас в промышленности получают газ V8?

Задача 2. В конце XX века английский ученый при исследовании пыли с сернокислотных производств решил воспользоваться новым для того времени аналитическим методом – спектральным анализом. В спектре он обнаружил новую линию, которую нельзя было приписать ни одному из известных на тот момент элементов. Так был открыт элемент X.

Об элементе **X** в то время говорили как об элементе редком и рассеянном, однако **X** не так уж редок. Найдены даже его собственные минералы, например, *минерал* **Y**, при обжиге 100 г которого в избытке кислорода, с последующим длительным выдерживаем твердых продуктов обжига в избытке кислорода, образуется твердый остаток такой же массы, а также некоторый газ объемом 13,06 л (н.у.) (*p-ция 1*). При этом если газообразный продукт обжига пропустить через нагретый оксид ванадия (V) с избытком кислорода, образуется другое соединение (*p-ция 2*), конденсирующееся в циклический тример при охлаждении (*p-ция 3*).


Ниже представлена схема превращений веществ \mathbf{A} - \mathbf{H} , в состав каждого из которых входит элемент \mathbf{X} , в круглых скобках указаны номера реакций.

в-во	^ω (X)	
A	89,5%	
Б	96,2%	
Д	74,2%	

- 1. Определите элемент X, формулу минерала Y, ответ подтвердите расчетом. Запишите уравнения реакций 1-3.
- 2. Расшифруйте цепочку превращений, запишите формулы соединений А-И.
- 3. Напишите <u>уравнения</u> *реакций* **4 14**. На месте знаков «???» в реакциях **8 10** предложите реагенты для их протекания (и условия, где это возможно).

Задача 3. Лекарственный препарат M применяется для лечения нескольких заболеваний, влияет на транспорт ионов через мембраны нервных клеток. Структура M содержит гетероциклический фрагмент. На схеме представлены подходы к синтезу M из соединения A. Реагенты или катализаторы реакций зашифрованы обозначениями X₁-X₆, при этом под каждым соединением X подразумевается одно вещество из списка на схеме. Также зашифрованы названия реакций, каждое «...» означает одно слово в названии реакции.

- 1. Определите неизвестные вещества А-F и M и приведите их структурные формулы.
- 2. Сопоставьте реагенты/катализаторы X_1 - X_6 и вещества из списка.

Задача 4. На схеме представлен синтез забавного соединения **R**, напоминающего снеговика. В цепочке превращений участвуют соединения **X**, **Y**, **A1**, **A2**, **A3**, являющиеся продуктами крупнотоннажного органического синтеза. Соединение **A2** является побочным продуктом при получении **A1** в промышленном процессе газофазной гидратации **Y**. Вещество **A3** используется как органический растворитель, образуется при кислотной обработке **A2**. Дополнительно известно, что структура **A3** является фрагментом соединения **R**, а вещество **D** содержит ароматический гетероциклический фрагмент.

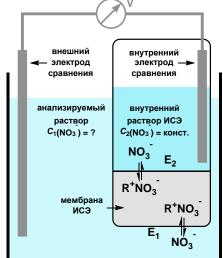
A3
$$\stackrel{\text{H}^+}{\overset{\text{t}^-}{\text{H}^2}}$$
 A2 $\stackrel{\text{CrO}_{3, -2}\text{SO}_4}{\overset{\text{H}_2\text{O}, \text{ ацетон}}{\text{ н}^2}}$ В $\stackrel{\text{MeOH}}{\overset{\text{H}^+}{\text{H}^+}}$ С $\stackrel{\text{NeONa}}{\overset{\text{Kat. MeONa}}{\text{ кат. MeONa}}}$ D $\stackrel{\text{Br}}{\overset{\text{K}_2\text{CO}_3}{\text{ K}_2\text{CO}_3}}$ Е $\stackrel{\text{1. NaOH}}{\overset{\text{1. NaOH}}{\text{ 2. H}^+}}$ F $\stackrel{\text{t}^-}{\overset{\text{Kat. Cu}}{\text{ кат. Cu}}}$ G $\stackrel{\text{NeONa}}{\overset{\text{NeONa}}{\text{ K}_2\text{CO}_3}}$ P $\stackrel{\text{SO}_2}{\overset{\text{H}_2\text{O}}{\text{ H}_2\text{SO}_4}}$ N $\stackrel{\text{H}^+}{\overset{\text{H}^+}{\text{ H}^+}}}$ M $\stackrel{\text{NeoNa}}{\overset{\text{NeoNa}}{\text{ Kat. Ag}}}$ P $\stackrel{\text{NeoNa}}{\overset{\text{NeoNa}}{\text{ K}_2\text{CO}_3}}$ P $\stackrel{\text{NeoNa}}{\overset{\text{NeoNa}}{\text{ H}_2\text{ NeoNa}}}$ P $\stackrel{\text{NeoNa}}{\overset{\text{NeoNa}}{\text{ H}_2\text{ NeoNa}}}$ P $\stackrel{\text{NeoNa}}{\overset{\text{NeoNa}}{\text{ K}_2\text{CO}_3}}$ P $\stackrel{\text{NeoNa}}{\overset{\text{NeoNa}}{\text{ H}_2\text{ NeoNa}}}$ P $\stackrel{\text{NeoNa}}{\overset{\text{NeoNa}}{\text{ K}_2\text{CO}_3}}$ P $\stackrel{\text{NeoNa}}{\overset{\text{NeoNa}}{\text{ K}_2\text{CO}_3}}$ P $\stackrel{\text{NeoNa}}{\overset{\text{NeoNa}}{\text{ K}_2\text{ NeoNa}}}$ P $\stackrel{\text{NeoNa}}{\overset{\text{NeoNa}}{\text{ K}_2\text{ NeoNa}}}$ P $\stackrel{\text{NeoNa}}{\overset{\text{NeoNa}}{\text{ NeoNa}}}$ P $\stackrel{\text{NeoNa}}{\overset{\text{NeoN$

Определите структурные формулы веществ X, Y, A1, A2, A3, B - P (всего 20 веществ).

Задача 5. Теплота сгорания некоторого циклоалкана **A** составляет 2933 кДж/моль. Получить незамещенный циклоалкан **A** можно из циклоалкана **B** с помощью следующей последовательности реакций:

- 1. Определите брутто-формулу соединения **A**, ответ подтвердите расчетом.
- 2. Расшифруйте цепочку превращений. Приведите структурные формулы А-3.
- 3. Напишите уравнения всех реакций на схеме.
- 4. Рассчитайте теплоту сгорания соединения 3.

При расчетах все вещества считайте газами и используйте следующие значения энергий связи:


Связь	Энергия, кДж/моль	Связь	Энергия, кДж/моль	Связь	Энергия, кДж/моль
C–C	348	С–О	344	О–Н	460
С–Н	414	C=O	708	O=O	494

Задача 6. Определение нитрат-ионов в различных объектах является одной из распространенных задач аналитических лабораторий. Содержание нитратов можно определить с помощью ионселективных электродов (ИСЭ).

ИСЭ содержат внутренний раствор с электролитом определенной концентрации и полупроницаемую мембрану. Мембрана состоит из вещества, участвующего в равновесии как с внутренним, так и с внешним раствором электролита. В случае нитрат-селективных электродов в качестве одного из компонентов мембраны используют соли, которые можно записать в виде $R^+NO_3^-$.

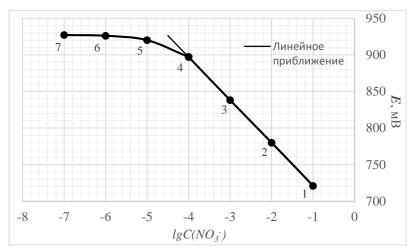
В результате установления равновесия в растворе на границе раздела фаз возникает равновесный потенциал E, который связан с концентрацией ионов анализируемого раствора.

При анализе растворов, содержащих только определяемый ион, потенциал ИСЭ линейно зависит от lgC и описывается уравнением Нернста:

$$E = const + \frac{2,303RT}{Z_{\Delta}F} lgC_{A}$$

где const — постоянная для данного электрода величина; R=8,314 Дж/(моль·К) — универсальная газовая постоянная; T — температура раствора в Кельвинах; $Z_{\rm A}$ — заряд определяемого иона с учетом знака; F=96485 Кл/моль — постоянная Фарадея; $C_{\rm A}$ — концентрация определяемого иона.

При определении концентрации интересующего иона в растворах, содержащих мешающие ионы, может наблюдаться искажение результатов анализа. При высоких концентрациях определяемого иона (в так называемой Нернстовской области) взаимодействие ИСЭ с мешающими ионами не вносит существенный вклад в значение потенциала. При низких концентрациях определяемого иона данное взаимодействие существенно искажает результаты анализа. В таком случае зависимость потенциала от концентрации можно описать уравнением Никольского:


$$E = const + \frac{2,303RT}{Z_{A}F} \lg(C_{A} + k_{A/B} \cdot C_{B}^{\frac{Z_{A}}{Z_{B}}})$$

где $k_{\rm A/B}$ — коэффициент селективности, отражает влияние мешающих ионов В на потенциал электрода, селективного к ионам А; C_B — концентрация постороннего иона; Z_B — заряд постороннего иона с учетом знака.

Для оценки коэффициента селективности используют метод постоянной концентрации мешающего иона (метод смешанных растворов). В ходе этого метода готовят модельные растворы с одинаковой концентрацией мешающих ионов. С понижением концентрации нитрат-ионов потенциал электрода все в большей степени будет определяться концентрацией мешающих хлорид-ионов. При очень низкой концентрации нитрат-ионов потенциал электрода будет определяться только концентрацией хлорид-ионов.

Для определения зависимости потенциала E нитрат-селективного электрода от концентрации нитрат-ионов и коэффициента селективности $k_{NO_3^-/Cl^-}$ провели анализ семи модельных растворов нитрата калия в 0,1M растворе хлорида калия. Экспериментальные данные приведены в таблице и на графике в координатах E от $lgC_{NO_3^-}$.

No	$C_{NO_3^-}$, M	$lgC_{NO_3^-}$	Е, мВ
1	10-1	-1	721
2	10-2	-2	780
3	10-3	-3	838
4	10-4	-4	897
5	10-5	-5	920
6	10-6	-6	926
7	10-7	-7	927

- 1. По данным в таблице и на графике определите наименьшую концентрацию NO₃-, соответствующую Нернстовской области.
- 2. Для Нернстовской области, исходя из экспериментальных данных, определите линейный коэффициент $\frac{2,303RT}{Z_{A}F}$ и рассчитайте температуру раствора в эксперименте в градусах Цельсия.
- 3. Используя экспериментальные данные, найдите значение *const* для данного электрода. Какую размерность будет иметь данная величина?
- 4. Потенциал нитрат-селективного электрода в некотором анализируемом растворе равен 832 мВ. Рассчитайте концентрацию нитрат-ионов в мг/л в этом растворе.
- 5. На примере мешающих хлорид-ионов запишите равновесие, происходящее с мембраной нитрат-селективного электрода, в результате которого наблюдается отклонение потенциала от линейной функции.
- 6. Найдите величину коэффициента селективности $k_{NO_2^-/Cl}$ для этого электрода.
- 7. В лабораторию для анализа поступил образец хлорида калия классификации «химически чистый». Для определения содержания нитратов навеску образца массой 373 мг растворили в воде, довели объем раствора до 50,0 мл, провели измерение потенциала. Затем к этому раствору добавили 10,0 мл 1,0·10⁻⁴ М раствора KNO₃, потенциал изменился на 3,91 мВ. Определите массовое содержание нитратов в образце.