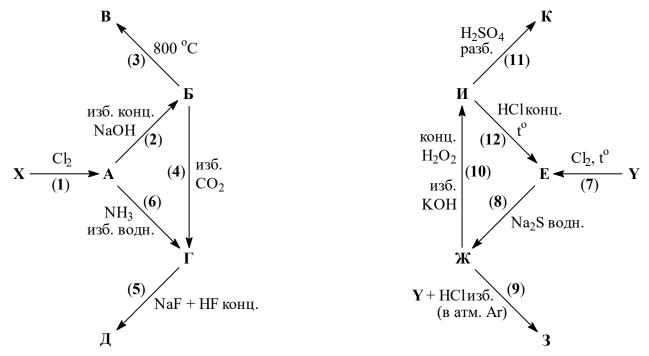
Пояснительная записка

Региональный этап Олимпиады по химии проводится в 2 тура. Для каждой из трёх возрастных параллелей: 9-го, 10-го и 11-го классов подготовлен отдельный комплект заданий теоретического и практического туров. В задание теоретического тура входит 5 задач из различных разделов химии для каждой возрастной параллели участников, причём в каждом комплекте заданий есть поощрительные и дифференцирующие задачи. Задание экспериментального тура построено как небольшое исследование. В нём содержится подробная инструкция для выполнения работы и описаны правила оформления полученных результатов.

Длительность каждого тура составляет 5 (пять) астрономических часов.

Распределение тематики задач по классам представлено в таблице:

Задача Класс	1	2	3	4	5
9	Неорганическая химия				Физическая химия
10	Неорганическая химия			Органическая химия	Физическая химия
11	Неорганическая химия		Органическая химия		Физическая химия


Теоретический тур Девятый класс

Задача 9-1

При хлорировании металлов X и Y образуются соответствующие хлориды A и E, имеющие одинаковый стехиометрический состав. Известно, что молярная масса хлорида A в 1,187 раза меньше, чем E, а массовое содержание хлора в A составляет 79,75 %.

1. Определите металлы X и Y. Подтвердите свой ответ расчётами.

Ниже приведены схемы превращений соединений \mathbf{A} –Д, содержащих \mathbf{X} , и соединений \mathbf{E} – \mathbf{K} , содержащих \mathbf{Y} .

2. Приведите формулы соединений А-К и напишите уравнения реакций (1-12).

В уравнении 12 укажите агрегатное состояние соединения И.

- **3.** Для получения металла **X** в промышленности применяют электролиз расплава смеси, содержащей оксид этого металла и соединение Д (которое редко встречается в природе в виде соответствующего минерала). Напишите тривиальное название соединения Д и поясните, для чего добавляют Д при электрохимическом получении **X**.
- **4.** Водный раствор соединения **3** неустойчив на воздухе, поэтому реакцию (**9**) необходимо проводить в атмосфере Ar. Напишите уравнение реакции, которая будет протекать с раствором **3** на воздухе.

Задача 9-2

Элемент X мало распространён в природе. Чаще всего его соединения сопутствуют минералам, содержащим элемент Y, находящийся с X в одной подгруппе. Элемент Y встречается в земной коре и в виде простого вещества.

При действии разбавленной азотной кислоты на простое вещество **A**, образованное элементом **X**, получается *кислота 1*, содержащая 61,2 % **X** по массе (*реакция 1*). При действии на *кислоту 1* 30%- ным раствором пероксида водорода образуется *кислота 2* (*реакция 2*). О *кислоте 2* известно, что она является сильным окислителем и способна растворять золото. Золото переходит в соединение, содержащее ион Au(3+), и анион *кислоты 2*, а в реакции не образуются газообразные продукты (реакция 3).

1. Установите, о каких элементах X, Y идёт речь. Ответ обоснуйте.

Про Y дополнительно известно, что он может образовать кислоты, аналогичные по составу κ ислоте 1 и κ ислоте 2.

- 2. Определите *кислоту 1* и *кислоту 2*. Ответ подтвердите расчётом.
- 3. Напишите уравнения реакций 1–3.
- 4. В честь какого небесного тела назван элемент **X**?
- 5. Напишите уравнение реакции простого вещества **A** при сплавлении с алюминием и гидроксидом натрия (*реакция 4*). Установите формулу бинарного продукта реакции соединения **Б**, содержащего в структуре цепочки X_4 , массовая доля **X** в **Б** составляет 87,3 %.

Задача 9-3

Для определения состава смеси простых веществ **A**, **Б** и **B**, образованных элементами одной группы периодической системы Д. И. Менделеева, проделали следующие опыты:

Опыт 1

Навеску смеси тонких порошков **A**, **Б** и **B** массой 4,6915 г высыпали в 30%-ный раствор азотной кислоты. В результате выделился бесцветный газ Γ с плотностью по водороду 14,88, образовался *раствор 1* (*реакция* 1) и остались не растворившиеся вещества **A** и **Б**.

Опыт 2

Осадок веществ **A** и **Б** отфильтровали, отмыли от кислоты и высушили, после чего их всыпали в концентрированный раствор гидроксида натрия. При этом выделился лёгкий газ \mathcal{I} , образовался *раствор 2* (*реакция* 2) и в осадке осталось вещество **A** массой 0,6005 г.

Опыт 3

Осадок вещества **A** отфильтровали и отмыли от щёлочи, высушили и сожгли в кислороде (*реакция* 3). Единственным продуктом реакции является газ **E**, объём которого составил 1,12 л (н. у.). Газ **E** полностью растворили в избытке раствора гидроксида натрия, полученный раствор охладили, при этом

образовались бесцветные кристаллы вещества **Ж** массой 8,5637 г (массовая доля кислорода в веществе **Ж** равна 72,68 %) (*реакция* 4).

Опыт 4

Раствор 1 упарили почти досуха и твёрдый остаток растворили в воде. К полученному раствору добавили раствор сульфида калия. Из раствора выпал чёрный осадок вещества **3** (реакция 5) массой 3,5890 г.

<u>Опыт</u> 5

Раствор 2 обработали соляной кислотой, в результате чего выпал осадок (*реакция* 6). Его отделили от раствора и прокалили (*реакция* 7). Масса полученного вещества **И** составила 2,1030 г.

Вопросы

- 1) Определите вещества А–И. Ответ обоснуйте. Состав веществ Г, Е, Ж, 3, И подтвердите расчётом.
- 2) Напишите уравнения реакций 1-7.
- 3) Определите массовые доли **A**, **Б** и **B** в исходной навеске, и выход вещества **Ж** при кристаллизации. **ВНИМАНИЕ:** при расчётах относительные атомные массы необходимо брать с точностью до третьего знака после запятой!

Задача 9-4

Неизвестный порошок вещества X_1 жёлтого цвета состоит из двух химических элементов. При растворении X_1 в **большом** избытке концентрированной азотной кислоты выделяется бурый газ X_2 и образуется бесцветный раствор (реакция 1). При действии на этот раствор небольшого избытка водного раствора хлорида бария выпадает белый кристаллический осадок X_3 (реакция 2). К фильтрату, полученному при отделении осадка X_3 , добавляют избыток раствора нитрата серебра. При этом наблюдается выпадение белого творожистого осадка X_4 (реакция 3). К раствору, оставшемуся после отделения осадка X_4 , по каплям осторожно добавляют водный раствор гидроксида натрия до полного осаждения жёлтого осадка X_5 (реакции 4 и 5). Определите неизвестные вещества и запишите уравнения реакций (пять уравнений), предполагая, что все реакции протекают количественно, причём масса X_5 в 1,39 раз меньше, чем масса X_3 .

Задача 9-5

Окрашенный газ

В сосуде при температуре $15\,^{\circ}$ С и давлении $30\,^{\circ}$ КПа находится интенсивно окрашенный газ, состоящий из двух веществ; плотность газа составляет $0.968\,^{\circ}$ Г/л. В составе газа — атомы только двух элементов, причём мольные доли элементов равны.

Газ подвергли освещению при постоянной температуре до тех пор, пока давление в сосуде не перестало увеличиваться и достигло 45 кПа. После этого окраска стала менее интенсивной. При добавлении в сосуд раствора щёлочи окраска исчезла, а давление уменьшилось в 2 раза.

Если исходный газ выдержать при температуре $30\,^{\circ}$ С, то давление в сосуде возрастёт до $39.5\,^{\circ}$ КПа, а после добавления щёлочи оно уменьшится в $5\,^{\circ}$ раз.

- 1. Установите качественный и количественный состав исходного газа, если известно, что он полностью поглощается раствором щёлочи.
- 2. Объясните результаты обоих экспериментов. Напишите уравнения реакций и подтвердите ответ расчётами. Учтите, что все описанные реакции протекают до конца.